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Abstract 

This paper presents a tentative mathematical theory based on-Fick's second law to describe the performance of 
most polymer-based controlled release devices. These devices have two simultaneous counter-current fluxes. The 
first flux is the rate at which the diffusing material is released at an interface by relaxation of the glassy polymer. The 
second flux is the rate at which the material diffuses away from the interface. When the two rates or fluxes are equal, 
a critical point occurs. The length of the diffusional path from the surface to this point is defined as the 'critical 
length' and the time at which it is reached is defined as the 'critical time'. The parameters governing the release of 
the dissolved material are: the rate at which the interface moves, the diffusivity of the dissolved material in the 
rubbery polymer, and the total length of the diffusional path. The rates at which material was released from eleven 
different controlled release devices are compared here with rates predicted by mathematical derivation. 
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I. Introduction 

Higuchi (1963) presented the first conceptual 
mathematical  model for controlled release de- 
vices, dealing with a medicament  suspended in a 
homogeneous matrix insoluble in the solvent 
(body fluids). He recognized that leaching dif- 
fusible material  f rom the matrix would result in 
two sections divided by a sharp interface. In the 
section between the interface and the solvent, 
part  of the diffusible material  was leached out, 
however, nothing was leached in the section be- 
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h ind  the  f ront  and  the concen t ra t ion  of  diffusible  
ma te r i a l  t he re  would  be  at  its or ig inal  value,  c i. 

Higuch i  also r ecogn ized  tha t  the  concen t r a t i on  
d o w n s t r e a m  of  the  in te r face  was usual ly  less than  
the  concen t r a t i on  u p s t r e a m  of  the  in ter face ,  and  
tha t  the  concen t r a t i on  g rad i en t  d o w n s t r e a m  was 
d e t e r m i n e d  by the  ra te  the  ma te r i a l  d i f fused  away 
f rom the  in te r face  into a pe r fec t  sink. H e  m a d e  
the  a pp rox ima t ion  tha t  the  concen t r a t i on  gradi-  
ent  d o w n s t r e a m  of  the  in te r face  was l inear  and  in 
' p s e u d o  s teady-s ta te ' .  

The  physical  system s tud ied  by Higuch i  (1963) 
is s imilar ,  bu t  not  ident ica l ,  to the  system consid-  
e r ed  here ,  in which a solvent  p e r m e a t e s  a poly- 
mer ic  ma te r i a l  accord ing  to Case  II  t ranspor t .  In  
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such systems the rate of permeation of the sol- 
vent into the polymer is constant with time. AI- 
frey et al. (1966) wrote an excellent review on the 
theory of Case II transport. 

Both this system and that of Higuchi have in 
common a diffusional flux of dissolved material 
diffusing outwards from a moving interface. This 
flux is governed by Fick's law, and the rate of 
extraction decreases as the diffusional path grows 
longer. 

2. Theoretical outline 

Developing a theoretical understanding of how 
such systems work is the objective of this re- 
search. Mathematical functions for the amount of 
diffusible substance extracted over the course of 
time have been derived on the basis of Fick's 
second law. Data from the literature have been 
correlated with these mathematically derived ex- 
traction curves. 

Fig. 1 is a schematic diagram of the model 
system. A rod, or sheet, made of the polymeric 
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Fig. 1. Physical model. 

matrix containing the diffusible material, is placed 
in contact with a solvent. The polymer originally 
holds c i grams of the diffusible substance in each 
cubic centimeter. The concentration in the poly- 
mer at the end in contact with the fresh solvent is 
c o g / c m  3. As the solvent advances, diffusible 
material released at the interface diffuses out 
into the solvent. A sharp boundary is formed at 
the interface where diffusible material is being 
released. The interface moves at the rate of R 
c m / s .  

Two limiting cases are: (1) When solvent pene- 
trates the polymer instantaneously, the material 
is in solution and ready to diffuse out immedi- 
ately, in conformity with Fick's law. The mathe- 
matical solution for this case can be expressed as 
an infinite trigonometric series. (2) When the 
solvent permeates the rod extremely slowly, but 
dissolved material diffuses out rapidly. Here,  the 
rate of extraction from the rod is the same as the 
rate of release at the interface. At this limit, the 
rate of the solvent's permeation of the polymer 
determines the rate of extraction for the material. 
Cases of interest in pharmaceutical and other 
applications fall between these two limits. 

When a rod is initially placed in contact with 
solvent, the diffusion path's length is zero. As 
time progresses, the interface moves further and 
further away from the surface, the diffusion path 
gets longer, and the concentration of the diffus- 
ing substance in the rubbery polymer on the 
downstream side of the interface increases. 

In initial stages, the concentration downstream 
of the interface in the rubbery polymer is less 
than concentration upstream in the glassy poly- 
mer. A sharp break in the concentration profile 
occurs at the interface. Eventually, the concentra- 
tion on the downstream side becomes equal to 
the concentration on the upstream of the inter- 
face. 

Since Higuchi (1963) first proposed the use of 
a pseudo-steady state a number of other authors 
have attempted to improve that assumption (Paul 
and McSpadden, 1976; Lee, 1980; Korsmeyer et 
al., 1985; Singh and Fan, 1986; Cohen and Erneux, 
1988a,b). 

Cooke (1991) recently reviewed this work and 
presented a model, based on Fick's second law, 
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which leads to an exact expression for the con- 
centration gradient. 

When the concentration of the diffusing mate- 
rial downstream of the interface becomes equal 
to the concentration upstream, then, at that in- 
stant, the concentration change across the inter- 
face is zero. The distance from the surface to that 
point is defined as the 'critical length', and the 
length of time from the start of the process is 
defined as the 'critical time'. 

Fick's law for one-dimensional diffusion is 
given by Eq. 1: 

OZ/Ot = D(O2Z/Ox 2) (1) 

The variable Z in Eq. 1 is the dimensionless 
concentration: 

Z = ( c -  C o ) / ( c  i - c o )  (2) 

W h e n c = c  o Z = 0 ,  a n d w h e n c = c  i Z = l .  
The following 'base case assumptions' are used: 

(a) Diffusivity is constant, or it may vary with 
concentration. If it varies with concentration, D 
in Eq. 1 is an 'apparent diffusivity', an average 
value of the diffusivity. This matter is discussed 
further in the section dealing with Lee's data. 
(b) The interfacial boundary is distinct and in- 
finitesimally thin and has no concentration gradi- 
ent through it. 
(c) The interfacial boundary moves into the ma- 
trix at a constant rate, i.e., by Case II transport. 
(d) The concentration of the diffusible material 
upstream of the interface always remains at its 
original constant value. 
(e) The concentration of the diffusing material in 
contact with fresh solvent is kept constant in both 
polymer and solvent. 

If the physical conditions conform to the above, 
then the mathematical solution conforms to the 
observed extraction curve. Conversely, if the ob- 
served extraction curve conforms to the mathe- 
matically derived curve, then the physical condi- 
tions are as stated in the base case assumptions. 

In principle, systems of this type could be 
influenced by effects other than those postulated 
by the base case assumptions. For example, the 
rate at which the solvent permeates the polymer 
might accelerate with the passage of time. This is 

known as Super Case II Transport.  Jacques et al. 
(1974) have reviewed this subject. 

Anomalous cases should be detected by a poor 
fit of the data points to the theoretical curves. 
The ultimate aim is to find the sets of assump- 
tions necessary to predict extraction curves agree- 
ing with all cases. 

The moving interface's position is measured 
from the end of the matrix, which is in contact 
with the fresh solvent. 

2.1. Phases of  the process 

Four distinct phases govern the extraction of 
the diffusible material from the system. The ini- 
tial phases, A and B, occur just after the process 
starts, when the position of the interface is less 
than, or equal to, the critical length. 

In phase A, the final length of the diffusional 
pat h, Lf, the length of the rod, is less than the 
critical length. In phase B, the reverse is true. 
Phase B ends when the moving interface reaches 
the critical length. 

Phase C follows phase A. When the interface 
reaches the end of the rod and stops moving, the 
material still in the system continues to diffuse 
out. The instant the end of the rod is reached, 
the concentration profile is known from the sur- 
face up to the end of the rod or sheet from the 
solution obtained for phase A. In phase C, the 
problem is the classic one of 'diffusion in a rod 
with known initial and boundary conditions'. The 
solution can be expressed as a Fourier series. 

Phase D follows phase B. Here  the moving 
interface moves beyond the critical length. Before 
the critical length is reached, material can diffuse 
away from the moving interface faster than it is 
supplied at the interface. Afterwards the reverse 
is true; the interface is moving faster than the 
diffusion front. The instant the critical length is 
reached, the concentration profile is known from 
the surface up to the critical length from the 
solution obtained for phase B. 

At distances greater than the critical length, 
the material, has not yet been affected by the 
diffusion front, and the concentration profile is 
constant from the critical length to the final 
length. The phase D problem is similar to that of 
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phase C, but it has different initial and boundary 
conditions. It  also has a Fourier series solution. 

3. Mathematical solution 

Mathematical  equations used in the interpre- 
tation and correlation of data are summarized 
here. A full account of  the derivation is given in a 
paper  by Cooke (1991). 

Solutions to Eq. 1 can be sought in the form: 

Z =e-~2Dt(g sin Ax + K '  cos h x )  (3) 

The position of the interface, L, and the time, t, 
during phase A and phase B are related by the 
equation: 

t = L / R  (4) 

The separation constant, A, can be defined as 
another  constant, I41, divided by the critical length, 

L c • 

a = W / L o  (5) 

To simplify the notation define the dimensionless 
group: 

U= R L J D  (6) 

Eq. 3 can be written as: 

Z = Ke-(W2/Vxt/tc)[sin( Wx/L¢)] (7) 

A material  balance of the diffusible material  at 
the moving interface between the glassy and rub- 
bery polymer, shows that: 

d Z / d x  = (R/D)(1  - Z) (8) 

Eq. 4 can be used in Eq. 7 to eliminate t and 
give an equation relating Z to L for all times up 
to the point when L equals L¢. Changes in 
concentration across the surfaces x = L = 0 and 
x -- L -- L c are the same for both variables x and 
L, 

Differentiating Eq. 7 when x = L: 

d Z  
KWe-(W2/U×L/L°) COS sin 

d L  L c Lc U 

(9) 

Mathematical  notation 

Symbol Meaning 

B n constants 
D diffusivity 

D' apparent  diffusivity 

F dimensionless variable 

G dimensionless variable 

K a constant = 1.96434808 
L length to interface 

L c critical length 

Lf final length 
M mass 

Mf total diffusible mass in the system 

N goodness of fit parameter  
R rate of interface movement 

U a constant = 2.1606150 

W a characteristic value 1.09991455 
Y dimensionless yield 

Z dimensionless concentration 
c concentration 

c i original concentration 
c o concentration at surface 

e a constant = 2.7182818 

f dimensionless variable 
g dimensionless variable 

n an integer, a counter 

t t ime 

t c critical time 

tf time at final length 
x distance 
~- a constant = 3.14159265 

(2n - 1)~"/2 

When L = L  c and Z = I ,  according to Eq. 8, 
d Z / d L  = 0. Therefore:  

W tan W = U (10) 

When L = 0, and Z = 0: 

d Z / d L  =R/D (11) 

This leads to the eigenequation: 

eW/tan W= tan W sin W (12) 

This equation has an infinite number  of roots 
but, only the first characteristic value of 1.099915 
has physical meaning. 

Eq. 7 satisfies all the boundary conditions when 
W = 1.099915 and is a valid solution of Eq. 1 for 
times less than the critical time. 

After  the critical length is reached, the solu- 
tion to Eq. 1 for the remainder  of the process is 
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readily found by 
Crank (1975)). 

Define the dimensionless ratios as: 

f = L / L  c = t / t  c 

F = Wf = W L / L  c = W t / t  c 

From Eq. 9, 11 and 14 it follows that: 

( W 2 / U ) ( t / t c )  = F / K  

Fourier series solution (see 

(13) 

(14) 

(15) 

Eq. 7 can then be written as: 

Z = Ke-F/K sin( W x / L  c) (16) 

Eq. 16 gives values of the dimensionless concen- 
tration through the rubbery polymer for any posi- 
tion of the interface during phase A or phase B. 
Define the dimensionless ratios: 

g = L , / L ~  (17) 

and 

G = Wg = W L f / L  c (18) 

By integration of Eq. 16, the fractional yield, Y, 
is: 

Y =  ( F / G )  - ( K / G ) e - F / K ( 1  -- COS F) (19) 

In phase A, when f equals g, the interface has 
reached the final length and phase A ends. A 
curve marking the end of phase A can be derived 
and is shown on the graphs as a solid line. In 
phase B the final length is longer than the critical 
length. Phase B ends when the moving interface 
reaches the critical length. This boundary is also 
shown on the graphs as a solid line. 

Phase C follows phase A. When the interface 
stops at the end of the rod, the equation for the 
concentration profile is known. The phase C 
problem is the classic diffusion in a rod with 
known initial and boundary conditions, it is solved 
by a Fourier series solution. The solution is: 

B n -~2 (G-F) 
Y =  1 - ~ - - e  (20) 

where 

2 K e - C / K ( - I ( - 1 ) " ) G  cos G 

B , =  [ ( 2 n _ 1 ) 2 1 2 _ G  2 (21) 

and 

(2n - 1)rr (22) 
q t -  2 

Phase D follows phase B. When the moving 
interface moves beyond the critical length, it is 
then moving faster than the diffusion front. At 
the instant the critical length is reached, the 
concentration profile is known. The material, at 
distances greater than the critical length, has not 
yet been affected by the diffusion front, and the 
concentration profile is constant beyond the criti- 
cal length up to the final length. The problem in 
phase D is similar to that of phase C, but initial 
and boundary conditions are different. It is solved 
by a Fourier series solution. The solution is: 

B,  qZ2 ( W - F )  
- -  e K O 2  (23) Y = l - ~ q r  

where 

2[ Gsin  gr" ap~ cos 2 c o s - -  
t K g g 

Bn= I I t 2 - G 2  + T 

(24) 

3.1. The external physical parameters 

This system has three external physical param- 
eters; D, the diffusivity; R, the rate of perme- 
ation of the solvent; and Lf, the final length of 
the diffusional path. Two independent variables 
are: t, the time; and x, the distance from the 
surface. A third variable L, the position of the 
interface from the surface, is linked by Eq. 4 to 
the time. The dependent variable, Y, is the frac- 
tional amount of material extracted. 

In addition there is an eigenvalue, W= 
1.099915, and two other constants, K = 1.964348 
and U = 2.160617, related to it. 

Several other variables were used in deriving 
Eq. 19; in particular, F and G. These two dimen- 
sionless groups can be expressed in terms of 
external physical variables; 

F = R Z t / K D  (25) 

G = RL f/KD (26) 
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Fig. 2. Graph showing the variation of the dimensionless yield 
vs the dimensionless time for various values of the parameter 
g. 

and therefore Eq. 19 can be written as: 

Rt K2D ( R2t 
Y Lf Rt----~e - R 2 t / K 2 D , I - c o s ~ )  (27) 

This expresses the fractional amount extracted 
as a function of t ime before the critical point is 
reached, subject to values of the external physical 
parameters .  Eq. 20 and 23, governing extraction 
after the critical point has been reached, can be 
expressed similarly. I f  external physical parame-  
ters have been determined, then the dimension- 
less groups in Eq. 27 can be calculated and the 
amount  extracted as a function of time is known. 

3.2. Dimensionless plot of  extraction curves 

Fig. 2 shows how Y (the dimensionless yield) 
varies with f (the dimensionless time), for differ- 
ent values of the paramete r  g (the ratio of the 
final length to the critical length). The four dif- 
ferent phases, A - D  are marked on Fig. 2. 

3.3. Plot of  rate of  extraction vs the amount ex- 
tracted 

The rate of extraction vs the amount extracted 
can be shown by differentiating Eq. 19, 20 and 23 
and plotting the slope, d Y / d f  vs Y, for various 
values of g. The value of d Y / d f ,  when f equals 
zero, is 1/g. To plot all the curves on the same 
coordinates, the differential is multiplied by g, 
giving all curves a value of unity when f equals 
zero. The resulting slope is the 'normalized slope', 
shown in a graph in Fig. 3. The graph indicates 
how the release rate varies with different values 
of g. 

4. Comparison of the model with experimental 
data 

The theory is tested by comparing mathemati-  
cal predictions with experimental data. Several 
sets of extraction data in the literature can be 
used, however, none of these include a complete 
set of the external parameters.  
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showing the variation of the rate of extraction vs the amount extracted. 
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Table 1 
Parameters found by least-squares curve fitting for all data 

Data file g t Mf N 

Chien and Lambert 4.32 2.40 days 20.32 99.7 
Yollesl 0.907 22.23 days 89.89 99.9 
Yolles2 1.10 22.21 days 112.1 99.2 
YollesA 1.58 5.23 days 0.816 97.9 
YollesB 3.31 1.16 days 0.774 99.8 
YollesC 3.34 1.05 days 0.704 99.6 
Leel 1.71 0.295 hrs 1.00 99.5 
Lee2 1.34 0.507 hrs 1.00 99.5 
Lee3 1.32 1.109 hrs 1.00 99.3 
Hopfenbergl 0.026 8.12 days 1.98 99.7 
Hopfenberg2 0.035 8.13 days 6.2 99.8 

mately proportional  to elapsed time, but the rate 
of release later became proportional  to the square 
root of the time. They considered the initial phase 
to be 'part i t ion-controlled'  and the latter phase 
to be 'matrix-controlled' .  The phase they termed 
partit ion-controlled corresponds to phase B in 
this paper  and matrix-controlled corresponds to 
phase D. 

Fig. 4 plots these data as dimensionless yield 
vs the square root of dimensionless time, as was 
done in their paper.  The data correlate very well 
with the mathematical  theory. 

Ideally, these values should be given: D, the 
diffusivity of the active substance through the 
relaxed polymer; R, the rate at which the solvent 
permeates  the polymer; and Lf, the thickness of 
the diffusional path. Da ta  reported usually con- 
sist only of the amount  extracted at various times. 
These data can be fitted to the theoretical model 
to find the critical time, t¢, and the ratio of the 
final length to the critical length, g. If  the final 
length, the half thickness of the sheet, Lf,  is 
known, then D and R can be determined. 

4.1. Method of correlation of data 

The values of the parameters  g = Lf/L¢, the 
fractional length, t¢, the critical time, and Mf, the 
ultimate extract, were found by a least-squares fit 
of the literature data, using a computer-based 
search program. The measure  of the goodness of 
fit of the model to the experimental  points, N, is 
called the 'percentage  of the fit represented by 
the model '  (see Chatfield (1970)). The values of 
these parameters  are listed in Table 1. 

4.2. Data of Chien and Lambert (1974) 

Chien and Lamber t  studied release of ethyn- 
odiol diacetate from a silicone device using a 
62.5% polyethylene glycol 400 solution. Data  are 
from Fig. 6, page 519, of their article. They ob- 
served that the initial rate of release was approxi- 

4.3. Data of Lee (1988) 

Lee investigated the fractional release of thi- 
amine HC1 from initially dry poly(2-hydroxyethyl 
methacrylate) (PHEMA)  sheets at 37.5°C. Data  
are from Fig. 6, page 75, of the article cited. Each 
of three sheets had different initial concentra- 
tions of thiamine HCI. The thickness of the sheets 
was 0.0516 + 0.005 cm (personal communication 
from Professor Lee in 1992), making the half 
thickness 0.0258 cm. Using this value, the critical 
length, L~, can be calculated from the value 
found for g. R, the rate of advance of the inter- 
face, is the ratio LJ t¢ .  
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Fig. 4. Data of Chien and Lambert plotted as dimensionless 
yield vs the square root of dimensionless time. 
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Table 2 
Parameters calculated for Lee's data 

Parameter 

c i L c R D 
(%) (m) (m/s)  (m2/s) 

(XIO 4) (×10  7 ) (XIO 12) 

Leel 26.06 1.509 1.426 9.944 
Lee2 17.91 1.925 1.057 9.417 
Lee3 9.21 1.955 0.489 4.417 

In these sets of data, diffusivity varies with 
concentration. Tsang (1961) and Tsang and Ham- 
marstrom (1987) have shown that when the diffu- 
sivity varies with concentration, the solution of 
the differential equation can still be represented 
as series expansion of orthogonal functions, as 
was done here. Diffusivities determined for these 
three sets of data are 'apparent diffusivities,' 
which are average diffusivity values over the 
course of the extraction. 

The apparent diffusivity, D', is equal to 
L~R/2.1606. Table 2 tabulates these values and 
the data are plotted in Fig. 5. Both R and D' 
increased as initial concentrations increased. 

4.4. Data of Yolles et al. (1974) 

Yolles et al. studied the release of cyclazocine 
(2-cyclopropylm ethyl-2'-hydroxy-5,9-dim ethyl- 
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Fig. 5. Data  of  Lee plotted as dimensionless yield vs dimen- 
sionless time. 
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Fig. 6. Data of Yolles 1 and 2 plotted as dimensionless yield vs 
dimensionless time. 

6,7-benzomorphan) from a polyethylene sheet im- 
planted in rats. The body fluids permeated and 
relaxed the polymer. Some cyclazocine was triti- 
ated and the excretion could be followed radio- 
metrically. Data referred to as Yollesl  came from 
their Fig. 4, page 182. Data referred to as Yolles2 
came from their Fig. 3, page 181. The same 
chemical system was used. 

The value for the critical time, to, was found to 
be almost the same in the two samples, as would 
be expected. The two values for g = Lf/Lc dif- 
fered slightly, presumably because the sheets were 
not exactly the same thickness. In these data g is 
close to unity, and the 'sigmoidal wiggle' is the 
most pronounced. 

Three sets of data, referred to as YollesA, 
YollesB, and YollesC, are obtained from Fig. 5, 
page 183, of their article studying controlled re- 
lease of cyclazocine from polylactic acid (PLA) 
with molecular weights varying from 45000 to 
70000. PLA is metabolized by body fluids and 
disintegrates over a period of time. If cyclazocine 
were released as a result of the metabolism of the 
surface of the sheet, the device would be classed 
as an erodible type. An erodible sheet device 
would be expected to erode at a constant rate 
and release the cyclazocine at a constant rate. 
This is not the case here, however. Initially the 
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Fig. 7. Graph of the data of YollesA, YollesB, and YollesC 
plotted as the dimensionless yield vs the dimensionless time. 

cyclazocine is released slowly, then the release 
rate increases rapidly to a maximum, at about 6 
days, and then decays slowly. Fig. 6, page 184, of 
their article shows this. 

The data for YollesB and YollesC with molec- 
ular weights of 60 000 and 45 000 have values of g 
which are almost identical: 3.31 and 3.34, respec- 
tively. The curves for these two sets of data 
overlap each other on Fig. 7. The values of t c are 
also close at 1.16 and 1.05 days. The increase of 
molecular weight from 45 000 to 60 000 has made 
an insignificant change in the parameters  of the 
model. 

An excellent fit results with these two data 
sets. Our interpretation is that the release of 
cyclazocine is governed by the mechanism de- 
scribed here, at least initially. The disintegration 
of the matrix by metabolism is much slower, and 
affects the release rate in a minor way, if at all. 

However, the third set, YollesA, with a molec- 
ular weight of 70000, is very different with g = 
1.58, and t c = 5.23 days. The increase of molecu- 
lar weight to 70000 has changed both g and t c 
markedly. The increase of the molecular weight 
to 70 000 obviously changed the ratio of the diffu- 
sivity to the permeat ion rate. 

The experimental data in this case do not fit 
the mathematical  predictions as well as that of 
any other case examined. The percentage fit of 
this set of data is only 97.86% as compared  to 

over 99% for all the other data sets. The cause of 
the poor fit is the outlying data point, indicated 
on Fig. 7, at dimensionless time = 0.959 and di- 
mensionless yield = 0.136. This data point is al- 
most at the 'critical point '  and therefore its posi- 
tion is indicative that this data set may be 
'anomalous ' .  It is unlikely that this point is an 
experimental  error, since the authors state that it 
is the mean value for three or four experiments. 
Clearly, the release mechanism for this system, 
using PLA with a molecular weight of 70 000, is 
different from that for the other systems. 

However, if this is an anomalous case, indicat- 
ing that the physical system was different from 
that postulated by the base case assumptions, it 
would be pure speculation to suggest which of the 
base case assumptions does not apply. More data 
are required to resolve the issue. 

4.5. Data of Hopfenberg (1981) 

The data of Hopfenberg are included here, 
although the system is not one used in pharmacy, 
because it shows that, if the system has a very 
small value of g, then the release rate is almost 
linear with time. Hopfenberg  extracted Sudan 
Red IV from polystyrene films using hexane. The 
data selected were for the first two experiments 
shown in Fig. 1, page 40, in the article cited. 

These two sets of data permit  an independent 
check on the validity of the model. Sheet no. 1 
was 3.30 x 10 -3 cm thick and contained 1% of 
the diffusible material  dissolved in it. Sheet no. 2 
was 4.38 x 10 -3 cm thick and contained 2.2% of 
the diffusible material. 

The solvent, the polymer, and the diffusible 
substance were the same in both cases. According 

Table 3 
Parameters  calculated for Hopfenberg 's  data 

Parameter  

c i Lf L c R D 
(%) (m) (m) ( m / s )  (m2 / s )  

( x l O  5) ( × l O  s ) (×101°  ) (×1013 ) 

Hopfenberg l  1.1 3.30 62.7 8.93 2.60 
Hopfenberg2 2.2 4.36 62.6 8.92 2.58 
% difference - - 0.136 0.159 0.290 
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Fig. 8, Data of Hopfenberg plotted as dimensionless yield vs 
dimensionless time. 

to the model, R, D, L c and t c should be the 
same. The values recorded in Tables 1 and 3 
show that this is the case. These two sets of data 
are plotted on Fig. 8. As can be seen, the extrac- 
tion rate is nearly linear with time. 

5. Discussion 

The partial differential equation governing the 
release of material in these types of devices is 
Fick's equation for unsteady state diffusion. No 
modification of the differential equation is neces- 
sary. The key to the problem's solution lies in 
incorporating the rate at which the interfacial 
boundary moves into the boundary conditions. 
This solution leads to the concept of a critical 
length and a critical time. The parameters which 
determine these values are D, the diffusivity of 
the solute, and R, the rate at which the interfa- 
cial boundary moves. The shape of the extraction 
curve is determined by g, the ratio of the final 
length, to the critical length. 

The validity of the theory is demonstrated in 
the following ways: 

(a) Ten sets of experimental data coming from 
four independent research groups are all fitted by 
the theory. The percentage of the fit is 99.2% or 
better in these cases. 

(b) The theory predicts that the critical time 
and the critical length are the same for similar 
chemical systems, i.e., a system in which D and R 
are the same. The two sets of data from Hopfen- 
berg (1981) and two sets of data from Yolles et al. 
(1974) confirm this point with the difference of 
the critical times being about 0.1% in both cases. 

(c) The theory predicts that if g is quite small, 
say less than 0.05, then the extraction curve will 
be almost linear with time over its entire length. 
The data of Hopfenberg (1981) conform to this 
prediction. 

(d) The theory predicts a sigmoidal 'wiggle' in 
the curve when g is near unity. The data of 
Yollesl and Yolles2 conform to this prediction. 

(e) The theory predicts that if g is greater 
than t~ity, there will be an induction period in 
the extraction curve, followed by a longer period 
in which the amount of extraction varies with the 
square ~ root of time. The data of Chien and 
Lambert (1974) and the data of Lee (1988) con- 
form to this prediction. 

It should be noted that the concentration of 
the dissolved material had a marked effect on 
both R, the rate of solvent permeation, and D, 
the diffusivity, in experiments carried out by Lee 
(1988); but in the experiments of Hopfenberg 
(1981), both R and D were unaffected by a 
change in concentration. 

One set of experimental data, namely, that of 
YollesA for cyclazocine being extracted from 
polylactic acid having a molecular weight of 
70000, is not fitted as well as the other data. 
While experimental error cannot be ruled out, 
this poorer  fit may indicate that some factor 
other than, or in addition to, the base case as- 
sumptions is influencing the release rate in this 
particular system. 

The theory presented here should be a valu- 
able tool for effectively designing polymeric con- 
trolled release devices by selection and combina- 
tion of the three external physical parameters; D, 
R, and Lf. 
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